Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Biol Med ; 152: 106384, 2023 01.
Article in English | MEDLINE | ID: covidwho-2240011

ABSTRACT

The convolutional neural networks (CNNs) have been widely proposed in the medical image analysis tasks, especially in the image segmentations. In recent years, the encoder-decoder structures, such as the U-Net, were rendered. However, the multi-scale information transmission and effective modeling for long-range feature dependencies in these structures were not sufficiently considered. To improve the performance of the existing methods, we propose a novel hybrid dual dilated attention network (HD2A-Net) to conduct the lesion region segmentations. In the proposed network, we innovatively present the comprehensive hybrid dilated convolution (CHDC) module, which facilitates the transmission of the multi-scale information. Based on the CHDC module and the attention mechanisms, we design a novel dual dilated gated attention (DDGA) block to enhance the saliency of related regions from the multi-scale aspect. Besides, a dilated dense (DD) block is designed to expand the receptive fields. The ablation studies were performed to verify our proposed blocks. Besides, the interpretability of the HD2A-Net was analyzed through the visualization of the attention weight maps from the key blocks. Compared to the state-of-the-art methods including CA-Net, DeepLabV3+, and Attention U-Net, the HD2A-Net outperforms significantly, with the metrics of Dice, Average Symmetric Surface Distance (ASSD), and mean Intersection-over-Union (mIoU) reaching 93.16%, 93.63%, and 94.72%, 0.36 pix, 0.69 pix, and 0.52 pix, and 88.03%, 88.67%, and 90.33% on three publicly available medical image datasets: MAEDE-MAFTOUNI (COVID-19 CT), ISIC-2018 (Melanoma Dermoscopy), and Kvasir-SEG (Gastrointestinal Disease Polyp), respectively.


Subject(s)
COVID-19 , Melanoma , Humans , Benchmarking , Neural Networks, Computer , Image Processing, Computer-Assisted
2.
Front Immunol ; 12: 679482, 2021.
Article in English | MEDLINE | ID: covidwho-1285291

ABSTRACT

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a disease that involves significant lung tissue damage. How SARS-CoV-2 infection leads to lung injury remains elusive. The open reading frame 8 (ORF8) protein of SARS-CoV-2 (ORF8SARS-CoV-2) is a unique accessory protein, yet little is known about its cellular function. We examined the cellular distribution of ORF8SARS-CoV-2 and its role in the regulation of human lung epithelial cell proliferation and antiviral immunity. Using live imaging and immunofluorescent staining analyses, we found that ectopically expressed ORF8SARS-CoV-2 forms aggregates in the cytosol and nuclear compartments of lung epithelial cells. Using in silico bioinformatic analysis, we found that ORF8SARS-CoV-2 possesses an intrinsic aggregation characteristic at its N-terminal residues 1-18. Cell culture did not reveal any effects of ORF8SARS-CoV-2 expression on lung epithelial cell proliferation and cell cycle progression, suggesting that ORF8SARS-CoV-2 aggregates do not affect these cellular processes. Interestingly, ectopic expression of ORF8SARS-CoV-2 in lung epithelial cells suppressed basal expression of several antiviral molecules, including DHX58, ZBP1, MX1, and MX2. In addition, expression of ORF8SARS-CoV-2 attenuated the induction of antiviral molecules by IFNγ but not by IFNß in lung epithelial cells. Taken together, ORF8SARS-CoV-2 is a unique viral accessory protein that forms aggregates when expressing in lung epithelial cells. It potently inhibits the expression of lung cellular anti-viral proteins at baseline and in response to IFNγ in lung epithelial cells, which may facilitate SARS-CoV-2 escape from the host antiviral innate immune response during early viral infection. In addition, it seems that formation of ORF8SARS-CoV-2 aggregate is independent from the viral infection. Thus, it would be interesting to examine whether any COVID-19 patients exhibit persistent ORF8 SARS-CoV-2 expression after recovering from SARS-CoV-2 infection. If so, the pathogenic effect of prolonged ORF8SARS-CoV-2 expression and its association with post-COVID symptoms warrant investigation in the future.


Subject(s)
COVID-19/immunology , Lung/pathology , Respiratory Mucosa/physiology , SARS-CoV-2/physiology , Viral Proteins/metabolism , COVID-19/virology , Gene Expression Regulation , HEK293 Cells , Humans , Immunity , Interferon-gamma/metabolism , Intracellular Space , Protein Aggregation, Pathological , Respiratory Mucosa/virology
SELECTION OF CITATIONS
SEARCH DETAIL